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We have experimentally examined the effects of bubble size (0.4 6 λ 6 2.0), in-
clination angle (0◦ 6 α 6 90◦), and tube material on suspended gas bubbles in
flows in tubes for a range of Weber (0 6 We 6 3.6), Reynolds (0 6 Re 6 1200),
and Froude (0 6 Frα 6 1) numbers. Flow rates and associated pressure differences
which allow the suspension of bubbles in glass and acrylic tubes are measured. Due
to contact angle hysteresis, bubbles which dry the tube wall (i.e. form a gas–solid
interface) may remain suspended over a range of flows while non-drying bubbles
remain stationary for a single flow rate depending on experimental conditions. Sta-
tionary bubbles increase the axial pressure gradient with larger bubbles and steeper
inclination angles leading to the greatest increase in the pressure gradient. Both
the suspension flow range and pressure difference modifications are strongly depen-
dent upon gas/liquid/solid material interactions. Stronger contact forces, i.e. smaller
spreading coefficients, cause dried bubbles in acrylic tubes to remain stationary over
a wider range of suspension flows than bubbles in glass tubes. Bubble deformation
is governed by the interaction of interfacial, contact, and flow-derived forces. This
investigation reveals the importance of bubble size, tube inclination, and tube material
on gas bubble suspension.

1. Introduction
The interfacial mechanics of bubbles or drops within a bulk fluid are of particular

interest to investigators studying oil recovery, nuclear reactor development, and in-
travascular gas embolism detection and treatment. Numerous reports describing the
behaviour of gas bubbles within liquids or liquid drops within liquids of different
properties are found in the literature. While there are industrial applications which
require the infusion of gases into liquid media in order to promote mass or heat
transfer, there are also conditions under which the accidental infusion of air may
disrupt the operation of a system. In cardiovascular physiology, the influx of air into
blood vessels, as may occur during surgery, is a potentially fatal complication for
which few definitive treatments have been devised. A significant impediment to the
development of adequate therapies is the lack of a thorough understanding of the
interfacial and physicochemical phenomena.

Various dimensionless parameters describing drops or bubbles in flows are com-
monly used to evaluate the relative contributions of the predominant mechanical
forces. The first is a geometric parameter, λ = a/d, which provides a measure of
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bubble size where a is the diameter of the undisturbed spherical volume of the bubble
(Vbubble = πa3/6) and d is the surrounding tube diameter. The Reynolds number,
Re = Ubdρb/µb (Ub, bulk fluid mean velocity; ρb, bulk fluid density; µb, bulk fluid
viscosity), relates the importance of the inertial forces to the viscous forces while the
Froude number, Fr = Ub/(gd)

1/2 (g, gravitational acceleration), provides a compari-
son of the inertial to gravitational forces. As demonstrated by Maxworthy (1991),
Fr may be expressed as Frα = Ub/(ga sin α)1/2 (α, tube inclination angle) which ac-
counts for tube inclination and bubble volume. The Bond number, G = ∆ρgd2/σ
(∆ρ, density difference; σ, surface tension), and the capillary number, Ca = µbUb/σ,
provide the relative importance of gravitational and viscous forces to surface tension
forces, respectively. The Weber number, We = ρbU

2
bd/σ = CaRe, is frequently uti-

lized to present the ratio of inertial to surface tension forces. The final dimensionless
parameter, γ = µ/µb, is a ratio of the bubble (or drop) viscosity to that of the bulk
fluid.

In performing one of the first examinations of a long gas bubble (i.e. λ� 1) moving
steadily with low Re through a liquid filled tube, Bretherton (1961) observed that in
the vertical tube the bubble rises under the effects of gravity at rates independent
of bubble size. Using the Stokes equations for low-Re flow, Reinelt (1987) performed
an analysis of Bretherton’s (1961) problem but for a wider range of Ca. As these
investigations are for low-Re flow, they provide insight into the current investigation
but cannot be used for direct correlation. Following Bretherton (1961), White &
Beardmore (1962) performed a similar experimental analysis and observed significant
increases in rise velocities as the tube was tilted through approximately 15◦ off the
vertical. Zukoski (1966) analysed long-bubble (λ > 1.44) behaviour in experiments
studying the effects of tube inclination (0◦ 6 α 6 90◦) on bubble rise velocity. Rise
velocity was found to be a maximum for α ∼ 45◦ and to decrease as G decreased to
G = 1. The author also determined that the rise velocity is independent of bubble
length for bubbles of λ > 1.3.

Maneri & Zuber (1974) experimentally examined the effects of inclination, bubble
volume, duct geometry, and fluid properties on the rise velocity of gas bubbles
in inclined ducts. For vertical tube cases, the fluid properties were found to be
unimportant as inertial forces dominate. In tubes inclined off the vertical, bubble
behaviour can be described by the competing effects of bubble streamlining and a
decrease in the axial buoyancy component. While no analysis is provided, Maneri
& Zuber also propose that surface and viscous forces may play a major role in
non-vertical situations. Through experimental and theoretical techniques, Maxworthy
(1991) also recognized the possible importance of surface forces in an analysis of
bubble rise under an inclined plate submerged in a liquid.

An extensive amount of research has also focused on smaller bubbles or drops
whose diameters are on the same order as that of the surrounding tube (λ = O(1)).
Hetsroni, Haber & Wacholder (1970) provide a numerical solution for the Re = 0
flow field in and around a neutrally buoyant gas bubble or liquid drop moving axially
within a circular tube filled with a viscous fluid. Brenner (1970, 1971) advanced
this analysis by investigating the added pressure drop due to the presence of the
bubble/drop and determined that the pressure change was positive for γ > 0.48
and negative for γ < 0.48. Olbricht & Leal (1982) examined the effects of density
difference between the bulk and drop phases (G 6= 0). Even small density differences
had profound effects in that the resulting eccentric drop position caused an increase
in the pressure gradient. No direct interaction between the drop phase and the tube
wall is reported in that work. A major limitation of these λ = O(1) investigations as
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relates to our application is that they have focused on bubbles/drops added to flows
in horizontal tubes.

A few studies do exist where the authors examined the flow field around gas
bubbles that are held axially stationary in downward flows in rigid tubes. Moo-Young,
Fulford & Cheyne (1971) experimentally suspended small bubbles (0.11 6 λ 6 0.32)
in a downward liquid turbulent flow with larger bubbles requiring higher suspension
flow rates. Similarly, Kojima, Akehata & Shirai (1975) investigated the behaviour of
bubbles of 0.04 6 λ 6 0.2 which were held stationary in downward turbulent flows.
They found that both the relative velocity and shapes of the bubbles in the flows
were similar to those observed in previous rising bubble studies, i.e. Rebulk = 0.

Lacking in the literature is an in-depth analysis of the possible physicochemical
interactions which may arise when a gas bubble is suspended in an inclined rigid tube
containing a bulk flow. This is especially true for bubbles in the range of λ = O(1)
with G > 1. In a square channel analysis of high-Re bubbles interacting with rigid
inclined Plexiglas walls, Tsao & Koch (1997) do mention that at smaller inclination
angles smaller bubbles would ‘stick’ to the tube wall, but they provide no specific
analysis. Chang et al. (1981) considered the contact mechanics of a gas bubble (λ ∼ 1)
in a water flow through a small capillary tube (d = 0.1 cm). Due to the use of small
capillary tubes, G� 1, and although this is a critical distinction in comparison to the
current work, a great deal of insight is gained from their study. The authors injected
bubbles of λ ∼ 1 into tube flow and observed that the pressure required to dislodge
the gas bubble is greater than the pressure to lodge. They attribute this phenomenon
to the contact dynamics between the three phases in that the contact line exhibits a
resistance to motion which must be overcome in order to induce dislodgment.

As demonstrated above, the possible interfacial interactions associated with bubbles
in tube flow may play a significant role in bubble behaviour. Therefore, a brief review
of basic wetting mechanics is provided for the reader. The classical problem in wetting
mechanics presents a liquid drop resting at equilibrium upon a solid horizontal
substrate surrounded by a gaseous phase. At each of the two-phase boundaries,
density and/or compositional differences exist which give rise to the presence of
tensile stresses at the interface, i.e. interfacial tensions. It is the net effect of these
interfacial stresses which determines the geometric and deformation characteristics of
the three-phase system. A common indicator of this force interaction is the contact
angle, φ, which is defined as the angle between the liquid–solid interface and the
line tangent to the gas–liquid interface and emanating from the triple point. The
exact angle a liquid makes when in equilibrium with a solid is directly related to the
interfacial free energies per unit area of the phase interactions. Frequently, a range
of stable contact angles may be observed with the endpoints of the range termed the
advancing and receding contact angles, i.e. φa and φr , respectively. For example, a
liquid drop resting on an inclined plate may display different endpoint contact angles.
Due to the tendency of the drop to slide down the plane, it deforms in an asymmetric
manner resulting in distinct contact angles at the advancing and receding edges such
that φr < φ < φa, where φa − φr represents one common definition of contact angle
hysteresis which does not take into account the actual magnitude of the contact
angles. For complete reviews of basic wetting mechanics the reader is directed toward
the vast amount of literature on the wetting mechanics of a liquid drop resting on
a solid substrate surrounded by a gaseous phase (e.g. Marmur 1997 and Spelt, Li &
Neumann 1992).

Examinations of the mechanical phenomena of static drops or bubbles adhering to
non-horizontal surfaces have also been presented by Iliev (1997), Dussan V. (1985),



228 D. P. Cavanagh and D. M. Eckmann

and Dussan V. & Chow (1983). Furthermore, the deformation and/or displacement of
drops or bubbles on a rigid surface due to the motion of the surrounding fluid phase
has been investigated by Dimitrakopoulous & Higdon (1997), Li & Pozrikidis (1996),
Feng & Basaran (1994), Dussan V. (1987), and Durbin (1988). Many investigators
cite contact angle hysteresis as the mechanism which allows drops or bubbles to
remain fixed to a solid surface in the presence of external flows. While contact angle
hysteresis has been the focus of numerous investigations, a complete understanding
of the fundamental causes is still lacking as noted by Extrand (1998) and Extrand &
Kumagai (1997). Various investigations, e.g. Extrand (1998) and Good & Koo (1979),
have noted that contact angle hysteresis may be attributed to a variety of factors
such as surface heterogeneity, adsorption/desorption, surface roughness, or surface
deformation.

In addition to investigating bubble behaviour resulting from passing liquid flows, a
number of researchers have examined the mechanics of the flow field. Fan & Tsuchiya
(1990) provide an excellent review of bubble wake dynamics. For flow past a bubble,
as Re is increased the flow may separate from the body with the free streamlines
rejoining at some downstream point forming a closed region, i.e. the wake, containing
stationary vortices. As Re is increased further, the free streamlines may not rejoin
downstream resulting in an open wake thereby allowing for vortex shedding. Finally,
for sufficiently high Re, the unstable and unsteady nature of the flow may produce a
completely turbulent wake. Since a bubble interface is deformable, the transitioning
of the surrounding flow and wake from laminar to turbulent may produce significant
modifications to bubble shape and stability.

In an investigation which is relevant to the current problem, Feng & Basaran (1994)
numerically examined shear flow over a cylindrical bubble pinned on a slot in a wall.
At a low finite Re, they found that the flow separates from the gas–liquid interface
and a recirculating eddy forms behind the bubble. As Re is further increased the
eddy grows in length but its width remains contained between the solid surface and
the separation point. Additionally, the investigators observe two distinct modes of
bubble deformation. For low Re, simple bubble skewing or tilting in the downstream
direction occurs, while for high Re, the bubble displays pure upward stretching. For
the high-Re flows, the asymmetric distribution of pressure on the interface reveals
low pressures at the rear which result in significant interfacial deformation tending to
tilt the bubble in the downstream direction.

The present work involves a gas bubble surrounded by a liquid phase within a
rigid tube with the potential for the bubble and tube to form a gas–solid interface.
In situations where a gas/solid interface does form, the gas bubble is said to have
‘dried’ onto the solid surface and the closed line at which the three phases meet is
termed the contact perimeter. The overall strength of the contact force associated
with a dried bubble is determined by the length of the contact perimeter and the
local force acting along it. For a gas bubble of λ = O(1) suspended within a flow in
a rigid tube at fixed inclination angle (0◦ 6 α 6 90◦), a number of forces exist which
act in an interdependent manner to govern the behaviour of the bubble and its effects
on the bulk flow field. These may include buoyancy, contact, inertial, surface tension,
and viscous forces. An experimental analysis of gas bubbles suspended in a viscous
liquid flow through a rigid circular tube inclined at angles from the horizontal to the
vertical is put forth in the present work. The relative importance of the forces listed
above is explored by means of varying the governing dimensionless parameters and
material properties.

This paper is divided into four sections. This Section has presented relevant back-
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Figure 1. Experimental apparatus.

ground and motivation, while § 2 describes the experimental apparatus (§ 2.1), the
experimental procedure (§ 2.2), and the data and image analysis techniques (§ 2.3).
The experimental results and discussion, presented in § 3, comprise static bubble im-
ages (§ 3.1), static bubble geometry (§ 3.2), suspension flow ranges (§ 3.3), minimum
suspension flow analysis (§ 3.4), and a pressure difference analysis (§ 3.5). At the end
of the paper, we present the conclusions from the investigation (§ 4).

2. Experimental methods
2.1. Experimental apparatus

The experimental apparatus used in the current investigation is depicted in figure
1. The apparatus may be broken down into the following subsections for ease
of discussion: test section; vibration/inclination platform; flow visualization; flow
system; and the data acquisition/analysis system. The test section consists of a 64 cm
length of either glass (ID = 0.57 cm) or acrylic (ID = 0.64 cm) rigid circular tubing.
At both ends of the test section, specially constructed smooth bore tube couplers are
used to join the test section to additional end pieces of the same tube material. These
end tubes are of sufficient length in order to eliminate entrance and end effects for
all flow rates examined. Machined into each of the tube couplers is a port to allow
pressure and temperature measurements. Approximately 60 cm of the test section is
enclosed in a glycerin filled square acrylic extruded tube in order to reduce visual
distortion.

The test section is mounted orthogonally on a custom inclination platform which
allows the test section to be oriented at angles ranging from 0◦ (horizontal) to 90◦
(vertical). The inclination platform is positioned on top of a 0.9 m× 1.8 m× 0.013 m
steel plate resting on six air filled tubes in order to eliminate any vibrations arising
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Glass Acrylic

Tube diameter (cm) 0.566 0.635
Static contact angle, φ (deg.) (n = 15) 43.1 ± 1.7 68.5 ± 1.2
Advancing contact angle, φa (deg.) (n = 15) 52.0 ± 1.8 77.0 ± 2.2
Receding contact angle, φr (deg.) (n = 15) 23.7 ± 1.5 48.4 ± 3.9
Contact angle hysteresis, φa − φr (deg.) (n = 15) 28.3 ± 2.2 28.6 ± 5.1
Surface tension, σ (dyne cm−1) (n = 15) 63.1 ± 3.6 63.1 ± 3.6
Spreading coefficient, S (dyne cm−1) −16.9 −39.4
Bulk viscosity, µ (cP)∗ 0.94 0.94
Bulk density, ρ (g cm−3)∗ 0.99 0.99

* Taken from Am. Soc. Eng. Manual, vol. 25, 1942.

Table 1. Material properties at room temperature (23 ± 1 ◦C).

from the surrounding structure or movement of the user. To allow side view axial
visualization of the bubbles, a PC controlled XY traversing table (Arrick Robotics,
model XY18-MD2) with an attached CCD digital camera (Javelin, model JE-7442)
is mounted onto the inclination platform. The digital image is recorded to videotape
after passing through a video image marker/measurement system (Boeckeler, model
VIA-150) permitting precise dimensional measurements.

In order to provide a steady laminar flow of the bulk fluid, a fixed pressure head
system is utilized for the experiments. As shown in figure 1, a supply reservoir is
raised 3.6 m above floor level and has a bulk fluid input, an output to the test
section, an overflow output to maintain the fixed head, and an open port to maintain
atmospheric pressure within the tank. Before the fluid reaches the test section, it
passes through two manual flow valves and a constant-temperature bath (Brinkman
Instruments, model RM6) in order to maintain the bulk fluid at 23 ± 1 ◦C. Directly
downstream from the exit of the test section is an electromagnetic flowmeter (Carolina
Medical, model 501) installed to provide flow measurements. After passing through
the flowmeter, the fluid drains into the recirculation tank where it is then pumped
through a polypropylene filter and returned to the supply reservoir. A differential
pressure transducer (Validyne, model DP-45-20) is installed to measure the pressure
difference between the machined ports in the tube couplers at the ends of the test
section. The use of a differential pressure transducer accounts for the hydrostatic
pressure difference which exists between the pressure ports for inclined tubes.

Due to the large volume of tap water used as the bulk fluid, the system is
acknowledged as being contaminated with respect to pure water. Selected properties of
the tap water have been examined for five experimental sessions providing measures of
surface tension and static, advancing, and receding contact angles on glass and acrylic
surfaces. The static contact angles of tap water on acrylic and glass are measured
with a goniometer (Tantec) utilizing the sessile drop technique. The advancing and
receding contact angles are used to determine contact angle hysteresis values and are
measured using an inclining plate apparatus similar to Extrand & Kumagai (1997).
These data are presented in table 1.

The primary distinctions between the glass and acrylic tube systems are the tube
diameters and the strengths of the contact forces. Based on the experimental static
contact angle measurements, spreading coefficients may be determined for each system.
The spreading coefficient, S , is a material-dependent property and is commonly
defined as S = σ(cosφ− 1) where higher contact angles will result in lower spreading
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Glass tube Acrylic tube

Effective bubble size, λ 0.4 6 λ 6 2.0 0.4 6 λ 6 2.0
Reynolds number, Re 0 < Re < 750 0 < Re < 1200
Capillary number, Ca 0 < Ca < 0.002 0 < Ca < 0.003
Weber number, We 0 < We < 1.5 0 < We < 3.6
Froude number, Frα 0 < Frα < 1.0 0 < Frα < 0.8
Bond number, G 6.1 11.9
Viscosity ratio, γ 0.019 0.019

Table 2. Dimensionless parameter ranges.

coefficients. For all 0◦ < φ < 180◦, S < 0 with wetting ability increasing as S → 0.
As shown in table 1, Sacrylic < Sglass indicating that the water is more likely to spread
over the glass surface than the acrylic. Hence, the contact forces, or those that resist
advancement of the contact line, are stronger in the air/water/acrylic system. Also,
note that the calculations of contact angle hysteresis reveal similar values for each
system even though the magnitudes of the contact angles in the acrylic system are
larger.

2.2. Experimental procedure

At the start of the experiments, temperature readings are recorded to verify that the
bulk fluid is at 23 ± 1 ◦C and that the axial temperature gradient in the test section
is less than 0.5 ◦C. With the bulk flow rate set to zero and the system flushed of
all air, a bubble of known volume is introduced at either the upstream (α 6 25◦)
or the downstream (α > 25◦) end of the test section using an airtight gas syringe.
The injection is performed in a rigid horizontal section of tubing to ensure that the
injected air forms only one bubble. After the injection, a slight increase in the bulk
flow (upstream injection) or buoyancy (downstream injection) is used to position the
initially undried bubble within the test section. With the bubble inside the test section,
the bulk flow rate is manipulated until the bubble has attained a stationary position.
The bubble is allowed to stabilize over a two to five minute period after which the
experimental analysis is initiated.

With the bubble stationary, a custom data acquisition program (LabView, Na-
tional Instruments) is activated to acquire approximately 10 s of data at a rate of
50 Hz. Both the flow rate, Qbulk, from the electromagnetic flowmeter and the pressure
difference, ∆Ptotal, from the differential pressure transducer are recorded. For each
bubble, the minimum and maximum flow rates, Qmin and Qmax respectively, which
allow for suspension are acquired along with the corresponding pressure differences.
Additionally, a 20 s segment of videotape of the suspended bubble is recorded for
image analysis. Each individual experiment, corresponding to a specific combination
of λ, α, and tube material, is carried out a minimum of three times.

2.3. Data and image analysis

The data acquired for each individual experiment are examined with the analysis
software which calculates and records the mean and standard deviation of the flow
and pressure signals. These mean values are used to determine the magnitudes of the
dimensionless parameters defined in § 1 with the overall ranges presented in table 2.

Measurements of maximum bubble thickness and bubble length are extracted from
the recorded two-dimensional images of the suspended bubbles using the measuring
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(a)

(b)

(c)

(i) (ii) (iii)

Figure 2. Video images of suspended bubbles in acrylic tubes. Bulk flow is from left to right.
(i) α = 25◦, (ii) α = 65◦, (iii) α = 90◦. (a) λ = 0.8, (b) λ = 1.1, (c) λ = 1.5.

capability of the video marker system. Maximum bubble thickness, D∗, is defined as
the distance from the upper tube wall to the gas/liquid interface in the core region of
the bubble. Bubble length, L∗, is measured from the leading tip to the trailing edge
of the bubble.

3. Results and discussion
We present below the experimentally determined suspension flows and pressures

for bubbles in flows in two tube materials. Corresponding bubble geometry data are
presented in order to provide physical explanations for the experimental results. For
each individual experiment in the current investigation, we observed two categories
into which a bubble may fall, i.e. bubbles that dry the tube wall and those that do not.
While bubbles that do not dry the tube wall remain suspended for only one flow rate
and pressure (Qbulk, ∆Pbulk), those that do dry the tube wall may remain suspended
over a range of flows (Qmin 6 Qbulk 6 Qmax) and pressures (∆Pmin 6 ∆Pbulk 6 ∆Pmax).
Flows and pressures outside the suspension ranges lead to axial translation of the
dried bubble in or opposite to the direction of flow.

3.1. Static bubble images

Nine side view images of stationary bubbles in acrylic tubes, each from separate
experiments, are presented in figure 2 in a matrix of three rows (a–c) and three
columns (i–iii). Each row represents fixed λ while each column represents fixed α. All
bubbles in this figure are held stationary under minimum suspension flow conditions
with the flow directed from left to right in the images. A bubble of λ = 0.8 at
α = 25◦ (figure 2 i a) dries the tube wall forming a distinct three-phase contact line. As
the bubble volume increases (figure 2 i b, c), the larger bubbles reveal larger contact
perimeters and penetrate further into the bulk flow region thereby reducing the gap
width through which the bulk liquid flows. The images of bubbles of λ = 1.1 (figure
2 i b) and λ = 1.5 (figure 2 i c) reveal similar end cap profiles and similar maximum
bubble thicknesses indicating that the increase in volume elongates the core region of
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(a) (b)

Figure 3. Video images of suspended bubbles of λ = 1.0 with α = 25◦. Bulk flow is from left to
right. (a) Qmin flow conditions with Remin ∼ 260, (b) Qmax flow conditions with Remax ∼ 390.

the bubble and separates the end caps without modifying their shapes. As λ increases,
the length of the dried bubble increases indicating that the water–tube interface is
shrinking while the water–air interface is growing. Since these two interfaces represent
extremely different boundary conditions for the bulk flow, this boundary replacement
for increasing bubble size may influence the overall mechanics of bubble suspension.

For α = 65◦ and λ = 0.8 (figure 2 ii a), a thin liquid film remains between the
bubble and the tube wall. In comparison to the same size bubble at α = 25◦ (figure
2 i a), the increase in α decreases the component of the buoyancy force normal to the
tube wall thereby inhibiting the rupture of the thin film. However, as the bubble size
increases to λ = 1.1 at α = 65◦ (figure 2 ii b), the buoyancy force normal to the tube
wall increases producing rupture of the thin film and the bubble dries the tube wall.
Further increases in λ produce drying bubbles with larger contact perimeters and
elongated core regions. At α = 90◦ (figure 2 iii a–c), no drying is observed as all of the
bubbles maintain axisymmetric positions within the vertical tube. As λ increases past
λ ∼ 1, the end cap geometry appears to remain fixed as the core region elongates.

Due to contact angle hysteresis, a bubble which dries a tube wall may remain
stationary while undergoing a series of conformational changes due to modifications
in the bulk flow rate. The endpoints (Qmin and Qmax) of the range of flows for which
a bubble will remain suspended correspond to distinct bubble shapes. Presented in
figure 3 are images of a bubble of λ = 1.0 in an acrylic tube at λ = 25◦ under Qmin

(figure 3a) and Qmax (figure 3b) conditions. At Qmin, the tendency of the bubble is
to rise in the tube from right to left thereby making the left side of the bubble the
leading edge and the right side the trailing edge. As Q is increased from Qmin to Qmax,
the axial position of the bubble remains fixed. However, the shape of the bubble
has changed resulting in the left edge becoming the trailing edge and the right edge
becoming the leading edge. Both the leading-edge and the trailing-edge contact angles
are very similar for the two images. The deformation observed in figure 3(b) correlates
well with the observations of Feng & Basaran (1994) where significant bulging of the
downstream interface resulted from the decreased pressure in the recirculating flow
region.

3.2. Bubble geometry

An analysis of the behaviour of the maximum thickness, D, and length, L, of the gas
bubbles in the glass tubes is presented in figure 4, where the measured dimensions have
been scaled with the tube diameter. Since the bubble is actually a three-dimensional
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Figure 4. Bubble dimensions as a function of λ for bubbles in glass tubes. (a) Maximum bub-
ble thickness, D. (b) Maximum bubble length, L. �, α = 5◦; N, α = 25◦; H, α = 45◦; �,
α = 65◦; e, α = 85◦.

object, the measurements of L and D provide only a two-dimensional representation
of true bubble shape. As bubble size increases, D plateaus in the vicinity of λ ∼ 1
for all angles of inclination indicating that the cross-sectional profiles of the bubbles
also level off near λ ∼ 1. This behaviour of D also indicates that the gap width
through which the bulk flow travels becomes constant for λ > 1. Since the cross-
sectional profiles of the bubbles remain constant for λ > 1, any increases in volume
must correspond to increasing bubble lengths. This is seen in figure 4(b) where as λ
increases through λ ∼ 1, the bubble length, L, increases in a cubic manner, i.e. the
bubble length increases linearly with λ3 which is proportional to Vbubble.

The dependence of bubble thickness on inclination angle is also apparent in figure
4(a) where D generally increases with α, indicating that the liquid gap width decreases
as the bubbles occupy more and more of the tube cross-sectional area. At lower α,
the buoyancy force normal to the tube wall is greater and tends to cause the bubble
to flatten out along the tube wall. As α increases, this buoyancy force component is
reduced thereby reducing the amount of bubble flattening. The lengths of the bubbles
are observed to display a low level of dependence on α (figure 4b). This may appear
to not correspond to the strong dependence of bubble thickness on α, but since the
bubble lengths are up to seven times the tube diameter, a fractional change in the
bubble thickness will have a modest effect on the bubble length.

Although the data in figure 4 are extracted from images of bubbles in glass tubes,
they correlate extremely well with the images of the bubbles in acrylic tubes shown in
figure 2. Examination of figure 2 shows that the maximum thickness of the bubbles
also increases for increasing λ and increasing α. Furthermore, there are no significant
changes in bubble length as the inclination angle is increased for fixed dimensionless
bubble size, λ.

3.3. Suspension flow ranges

For the glass tube experiments, the suspension flow ranges, expressed as Re, are
presented in figure 5 for all bubble sizes and four inclination angles. With the glass
tube in the horizontal position (figure 5a) only the smaller bubbles of λ 6 0.9 lead
to significantly different Remax and Remin values. While Remin = 0 for all bubbles at
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Figure 5. Re vs. λ for gas bubbles in glass tubes. �, Remax; •, Remin.
(a) α = 0◦, (b) α = 25◦, (c) α = 65◦, (d) α = 90◦.

α = 0◦, the values of Remax decrease with increasing bubble size. Although all of
the bubbles at this angle dry the tube wall, the contact forces play a significant role
only for the smaller bubbles which have smaller buoyancy forces, shorter lengths,
and are thinner than the larger bubbles (figure 4). At α = 0◦, the buoyancy force
has zero axial component resulting in the contact forces acting alone to resist axial
motion. Due to their small surface areas and cross-sectional profiles over which the
flow derived forces act, the smaller bubbles remain stationary even under flows of
Re ∼ 100. However, for increasing bubble volume, the gas/liquid surface area and
the cross-sectional profile expand so that lower flow rates are required to generate
adequate forces to dislodge the bubble. Subsequently, the larger bubbles (λ > 1) are
easily dislodged demonstrating their high level of sensitivity to flow variations despite
their larger contact perimeters.

For α > 0◦, the axial component of the buoyancy force is non-zero and, therefore,
buoyancy does participate in the axial force balance on the bubble. For α = 25◦, none
of the bubbles remain stationary in the absence of bulk flow (i.e. Re = 0) indicating
that the contact forces are not sufficient to counteract the buoyancy force. The
contact forces are, however, strong enough to allow the smallest bubble of λ = 0.4 to
remain suspended over a distinguishable range of flows. This phenomenon disappears,
however, for α = 65◦ where all bubbles remain suspended for only a single Re even
though some of the larger bubbles (λ > 1.5) still dry the tube wall. With the tube
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Figure 6. Re vs. λ for gas bubbles in acrylic tubes. �, Remax; •, Remin. (a) α = 0◦,
(b) α = 25◦, (c) α = 65◦, (d) α = 90◦.

in the vertical position (α = 90◦), all of the bubbles take an axisymmetric position
without drying the tube wall, thereby producing a situation in which Remin = Remax

for all λ. A general dependence of the suspension flows on the bubble size is found
for all angles of inclination. Specifically, as λ increases the suspension flows decrease
and level off in the vicinity of λ ∼ 1. This correlates well with the results depicted in
figure 4 and indicates a lack of dependence of the suspension flows on bubble length,
L, since the bubble thickness, D, remains fixed.

The suspension flow ranges for the acrylic tube experiments are presented in figure
6. All of the bubbles in the horizontal acrylic tube are observed to dry the tube wall
(figure 6a). While Remin = 0 for all λ as in the glass tubes, significant differences are
found in the Remax values. In contrast to the glass tube results, all bubbles of λ 6 1.5
display Remax values which are significantly different from the corresponding Remin

results. In direct comparison, a bubble of λ = 0.4 in the glass tube is able to withstand
the forces of a flow of Re ∼ 100 above which the bubble is dislodged downstream.
In the acrylic tube, however, a flow of Re > 1050 is required for dislodgment. For
these similarly sized bubbles, the difference in the strength of the contact forces is
responsible for the differing results. The wider suspension flow range observed in
the acrylic tube is attributed to the lower spreading coefficients associated with the
air/water/acrylic system (table 1). As the bubbles increase in size in the horizontal
tube, we again see a transition to a region where the flow-derived forces dominate and
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the larger bubbles are more sensitive to flow variations, i.e. display a more narrow
suspension flow range.

In contrast to the behaviour observed in the glass tube, a bubble of λ = 0.4 at
α = 25◦ is able to remain dried and stationary on the acrylic tube wall even under
zero flow conditions due to stronger contact forces (figure 6b). Also for this bubble,
Remax is found to be higher than was observed at α = 0◦. This may be explained by
the fact that at this non-zero inclination angle, the maximum flow allowable without
inducing translation has to generate viscous and inertial forces which are on the verge
of overcoming the buoyancy and motion-resisting contact forces. In the horizontal
tube, the flow only has to overcome the contact forces to dislodge the bubble. As the
bubble increases in size (λ > 0.4), the increased buoyancy force exceeds the contact
forces and causes the bubble to rise in the tube, thus requiring at least minimum
counterflows, Remin, to suspend the bubbles. There exist distinct flow ranges for which
all bubbles of λ > 0.4 remain suspended due to the bubbles drying the tube as shown
in figures 2 and 3.

As α is further increased to 65◦ (figure 6c), bubbles which both do not dry the wall
(λ < 1) and do (λ > 1) are observed. Unlike what occurs in glass tubes, if a bubble
in an acrylic tube does dry the tube wall, a distinct suspension flow range generally
exists due to the stronger contact forces. At α = 65◦, the buoyancy force component
directed normal to the tube wall is reduced. It is this force which will play a major
role in determining whether a bubble is able to rupture the thin liquid film observed
between the bubble and the wall. Since α is fixed in this case, it is the changing bubble
volume which is governing whether or not drying occurs as was seen in the video
images shown in figure 2. Finally, similar to the bubble behaviour observed in glass
tubes, non-drying bubbles attain axisymmetric positions within vertical acrylic tubes
and remain suspended for only a single flow rate (figure 6d).

3.4. Minimum suspension flows

Further attention is given to the minimum suspension flows determined for bubbles in
both tube types for the range of inclination angles and bubble sizes. Due to the fact
that most prior investigations involving buoyancy-affected bubbles have been carried
out in stagnant bulk liquids with bubble rise velocity being the commonly reported
parameter, we present here a qualitative comparison between our measurements of
suspension flow rates and the previously reported bubble rise velocities. For this
analysis, flow rates have been scaled as Frα,min which is a dimensionless velocity term
providing insight into the balance of inertial and buoyancy forces.

Figure 7 displays Frα,min as a function of bubble size for the glass and acrylic tube
experiments. In both tube materials for all α note that as λ passes through λ ∼ 1 the
suspension flow values tend toward a fixed value. As shown in figures 2 and 4, as
λ passes through λ ∼ 1, the cross-sectional profile of the bubble remains fixed while
the bubble length increases indicating an increase in the gas/liquid interfacial area.
Since the magnitude of the viscous forces is directly related to the interfacial area, the
observed insensitivity of the required suspension flow to bubble volume demonstrates
the minor role the viscous forces play in the overall force balance on these larger
bubbles. Because the cross-sectional profile of the bubble does not change greatly for
λ > 1, the inertial forces remain relatively fixed and play the dominant role among the
flow-derived forces. This result is in good agreement with the studies of Bretherton
(1961), White & Beardmore (1962), and Zukoski (1966) who all determined that the
rise velocities of large bubbles (λ > 1.4) are independent of bubble length. For all
λ and α, Frα,min < 1 indicating that buoyancy forces dominate the inertial forces
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especially for λ > 1.25, where Frα,min 6 0.1 for both tube materials and all α. Also,
note that the Frα,min values for the larger bubbles in the acrylic tube are slightly higher
than those for the glass tube. This apparent discrepancy may be explained simply
by the differing tube diameters. Although we are using a dimensionless analysis, the
respective Bond numbers for the two systems are different with Gglass ∼ 0.5Gacrylic.
Thus buoyancy forces are more prominent in the acrylic system thereby mandating
higher suspension flows.

Figure 8 displays Frα,min as a function of the inclination angle for the glass tube
experiments. The observed dependence of Frα,min on α for bubbles of λ > 1.3 is in
agreement with the results of Zukoski (1966) and White & Beardmore (1962). While
Zukoski (1966) observed that the rise velocities of large bubbles (λ > 1.4) peaked
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in the vicinity of α ∼ 45◦, White & Beardmore (1962) found significant increases in
rise velocity as α decreased from 90◦ to 75◦. For bubble rise under inclined plates in
Maxworthy (1991), Frα,min was at a maximum at α = 0◦ and decreased as α → 90◦.
Similar behaviour is found in figure 8 where bubbles of λ 6 1.1 display maximum
Frα,min values at either α = 5◦ or α = 25◦ after which Frα,min decreases as α → 90◦.
The differences between Maxworthy’s (1991) results and the current results at small
α may be attributed to the effects of drying and the confining nature of the tube,
especially for large λ. The dependence of Frα,min on α in the acrylic tube system is
similar to that observed for glass except the effects of drying are more severe and
produce near-zero Frα,min values for λ 6 1.1 at α = 5◦.

3.5. Pressure difference analysis

The minimum pressure differences, ∆Pmin, measured in the glass tube experiments
are presented in dimensionless form in figure 9 as a function of bubble size and
inclination angle. The pressures have been scaled with an inertial pressure scale such
that ∆Pmin = ∆P ∗min/ρU

2. In figure 9(a) a nonlinear dependence of ∆Pmin on bubble
size is observed. While there is little differentiation in the ∆Pmin values for λ 6 0.9,
as λ increases beyond λ = 1, a definite α dependence is observed with the highest
values associated with the vertical tube (α = 90◦). It was shown in figure 7 that
the minimum flow required for suspension was essentially constant for λ > 1. In
figure 9(a) we see that ∆Pmin continues to increase with λ despite the fixed flow rates.
This may be accounted for by recalling that for λ > 1, the cross-sectional profile
of the bubble is fixed and the bubble simply elongates as λ increases (figures 2 and
4). Although the flow required to suspend the bubbles is the same, the liquid gap
region between the bubble and the lower tube wall is longer for the larger bubbles.
Hence, for a fixed flow, a higher driving pressure would be required for the bulk
flow to completely traverse the longer bubble. The bubble might be said to act as
a constriction in the tube and as this constriction lengthens, the driving pressure
must increase to maintain a fixed flow rate. The overall effect of the bubble on the
driving pressures would be dependent upon the combined effects of the shrinking
gap width (for λ < 1), increasing bubble length, and the replacement of the no-slip
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boundary with a stress-free interface. The continued increase of ∆Pmin for λ > 1
shown in figure 9(a) demonstrates the minimal effect of the boundary replacement.
The dependence of the pressure differences on bubble size for the acrylic tube
experiments is found to be similar to that depicted in figure 9(a) for the glass tube
experiments.

The inclination angle dependence of the scaled pressure differences for the glass
tube experiments is presented in figure 9(b), which indicates that the lowest and
highest pressure differences are associated with bubbles in tubes inclined to 45◦ and
90◦, respectively. A rather symmetric dependence of ∆Pmin is observed about α ∼ 45◦,
especially for large λ. Again, the general dependence of scaled pressures on inclination
angles in acrylic tubes was determined to be similar to that observed in figure 9(b)
for glass tube experiments.

In addition to analysing the overall pressure differences associated with the sus-
pended bubbles, we also examine the added pressure due to the presence of the
bubble, i.e. ∆P+∗

min. Prior to this, characteristic relationships of pressure difference ver-
sus flow rate are constructed for flows in the acrylic and glass tubes without bubbles
present. The linear results yield that for the acrylic tube ∆P ∗(cm H2O) = 2.43 ×
10−3 Q∗ (cm3 min−1) and for the glass tube ∆P ∗(cm H2O) = 3.96×10−3 Q∗(cm3 min−1).
As a check of the realistic nature of our flow apparatus, similar relationships are
derived using Poiseuille flow theory with estimates of the viscosity and density of
the bulk fluid. These calculations yield proportionality coefficients of 2.94 × 10−3

and 4.06 × 10−3 for the acrylic and glass tubes, respectively. The similarity of the
experimental and theoretical relationships provides assurance that the experimental
apparatus is indeed producing steady, laminar flow as designed.

For each experiment, the measured suspension flow rate, Q∗min, is used to determine
∆P ∗Q which is the pressure difference required to generate Q∗min through the tube with
no bubble present. Upon subtraction of ∆P ∗Q from ∆P ∗min, a measure of the added

pressure difference due to the bubble, ∆P+∗
min, is obtained. Figure 10 presents the

behaviour of the dimensionless added pressure difference, ∆P+
min, as a function of λ

and α where ∆P+
min = ∆P+∗

min/∆P
∗
min. For both tube materials, a sigmoidal relationship is

found between ∆P+
min and λ for all α. At a fixed inclination angle, an increase in bubble

size results in an increased portion of the measured pressure that is attributable to
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the presence of the bubble. For small bubbles requiring higher flows for suspension,
the measured pressure differences are derived primarily from the bulk flow, indicating
that a small bubble has minor effect on the flow mechanics. Larger bubbles, however,
have a much greater effect on the flow mechanics as indicated in figure 10 in which
the measured pressure differences for the largest bubbles are primarily attributable
to the presence of the bubbles. For a fixed bubble size, an increase in the inclination
angle also results in an increase in the scaled added pressure difference, indicating
that suspended bubbles have a greater effect on the fluid flow in tubes oriented closer
to the vertical position (α = 90◦).

The effects of changing the tube material may be seen in a direct comparison of the
two plots in figure 10 where for most α and λ, the portion of the measured pressure
due to the presence of the bubble is lower in the acrylic tubes, i.e. a suspended bubble
in an acrylic tube has a smaller effect on the fluid mechanics. For a fixed bubble size
and tube inclination, a bubble in an acrylic tube would tend to be easier to suspend
due to the stronger contact forces in the air/water/acrylic system. The differences in
scaled pressures between the two systems are observed to disappear as α→ 90◦ where
the contact forces are absent.

4. Conclusions
We have presented here an investigation into the underlying mechanical and physic-

ochemical phenomena of a gas bubble suspended within a liquid flow. The primary
forces found to be governing overall bubble behaviour are the inertial forces derived
from the flow, the buoyancy force of the bubble, and the contact forces for bubbles
which dry the tube wall. The manipulation of the inclination angle, bubble size, and
tube material modifies these forces in a very complex interdependent manner. A great
deal of this complexity is attributable to the elaborate nature of the three-dimensional
bubble geometry upon which the governing forces act.

The results of the current experiments demonstrate the effects a bubble may have
if infused into a liquid flow in which buoyancy effects are important. In order
to maintain a fixed flow rate, as may be required in many industrial processes, a
significant increase in the driving pressure may be required with a bubble present.
The magnitude of the pressure increases would be dependent upon the volume of gas
infused (λ) and the inclination of the tube (α). As shown in figure 10, smaller bubbles
would tend to have a lesser effect than larger bubbles. Should a mechanical system
be limited to a certain driving pressure range, system performance could be severely
reduced should an appropriately sized volume of air enter the system. For example,
within the human vasculature, a bubble lodged in a major vessel may result in a
drastic increase in the work of the heart in order to maintain adequate blood flow
through the obstructed vessel.

The possibility of a gas bubble drying onto a tube surface may also have profound
implications for the operation of a fluid system. The current results show that
should a bubble dry to a surface, it may remain lodged for a range of bulk flows
dependent upon bubble size and tube inclination (figures 2, 3, 5 and 6). The ability
of dried bubbles to withstand bulk flow modifications and remain stationary is
found to be material dependent and attributed to contact mechanics and gas–liquid
interfacial deformation. Should a fluid system involve a pulsatile flow, a bubble
may remain lodged over the entire pulsatile period if neither a low enough nor
high enough bulk flow is reached. Similarly, if a fluid system has a maximum flow
limit, a dried bubble may remain lodged if the maximum allowable flow is not
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high enough to generate sufficient forces to dislodge the bubble. The exact geometry
a stationary bubble will exhibit would be strongly dependent upon the mechanics
of the nearby flow field as was demonstrated by Feng & Basaran (1994). While
Addlesee & Cornwell (1997) report the presence of a thin liquid film between a rising
bubble and an inclined plate, the occurrence of drying in the present investigation
demonstrates the impact of tube geometry and material properties on interfacial
mechanics.

As demonstrated in this investigation, contact angle hysteresis, when defined as
φa−φr , is not a suitable sole indicator of the importance of contact forces. Although
both material systems reveal similar contact angle hysteresis values (table 1), bubbles
in the acrylic tube system are suspended over wider flow ranges than equally sized
bubbles in glass tubes (figures 5 and 6). Therefore, the magnitudes of the advancing
and receding contact angles are determined to play the primary role in governing the
suspension of dried bubbles over ranges of flows.

To demonstrate the complex interdependence observed in this investigation, we
provide a brief discussion of how the simple modification of bubble size directly
affects all of the forces acting on the bubble. Initially, an increase in the size of
a non-drying bubble within a vertical tube would seem to require an increase in
the bulk flow in order to counteract the increased buoyancy force. The increasing
bubble size, however, also results in the modification of the flow-derived inertial and
viscous forces which may require further flow modifications to maintain suspension
of the bubble. Also associated with the larger bubble is the possible modification
of the local fluid mechanics in the vicinity of the gas–liquid interface. Changes in
the flow field may include phenomena such as vortex formation, vortex shedding,
or turbulence which may modify bubble shape which in turn will directly affect the
flow field. To further complicate matters, should the tube be inclined off the vertical,
a radial buoyancy component will tend to deform the bubble in an asymmetric
manner which will affect the flow field and the flow derived forces. Lastly, if the
bubble has dried the tube wall, an increase in bubble size will directly affect the
magnitude of the contact forces through the modification of the size of the contact
perimeter.

Due to the demonstrated interdependent complexity of the mechanical problem
of interest, the application of simple or relatively straightforward force balance
analyses in order to develop a representative model is extremely difficult. It is the
complex three-dimensional geometry which acts as the limiting step. Even standard
assumptions about the bubble geometry, such as the bubble being a spherically capped
elongating cylinder, are found to be severely inadequate. The lack of the ability to
adequately describe the bubble geometry, surface area, and contact perimeter as
functions of bubble volume and inclination angle acts as a major impediment to
scaling out an appropriate force balance.

Our demonstration of the complex interaction of the relevant forces in the current
flow problem correlates well with previous gas bubble and liquid drop investigations.
Although certain past investigators have recognized the possible importance of contact
mechanics, none have put forth a quantitative analysis. This investigation directly
demonstrates the critical importance of these material-dependent interactions on gas
bubbles suspended in inclined tubes containing liquid flow.
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